Model-Based Testing of a Wireless Sensor Network Node

Axel Belinfante Jan Tretmans Feng Zhu Marcel Verhoef Frits van der Wateren Universiteit Twente Radboud Universiteit / ESI Radboud Universiteit Chess Chess (WSN guru!)

What...

is our system under test?

A MyriaNed Wireless Sensor Network node...

Shares data by gossiping
Conserves energy by sleeping

Testing a Wireless Sensor Network Node

about sharing data by gossipping?

- MyriaNed 'GOSSIP' protocol
- inspired on biology and human interaction

• robust,

scalable, inherently self-configuring, supports mobility, automatic adaptation to network density

Testing a Wireless Sensor Network Node

about sharing data by gossipping?

- MyriaNed 'GOSSIP' protocol
- inspired on biology and human interaction

• robust,

scalable, inherently self-configuring, supports mobility, automatic adaptation to network density

- 'clean' node 🤇
- 'new' data (
- 'old' data 🛛 😑
- GOSSIP →

Testing a Wireless Sensor Network Node

about sharing data by gossipping?

- MyriaNed 'GOSSIP' protocol
- inspired on biology and human interaction

• robust,

scalable, inherently self-configuring, supports mobility, automatic adaptation to network density

Testing a Wireless Sensor Network Node

about sharing data by gossipping?

- MyriaNed 'GOSSIP' protocol
- inspired on biology and human interaction

• robust,

scalable, inherently self-configuring, supports mobility, automatic adaptation to network density

Testing a Wireless Sensor Network Node

about sharing data by gossipping?

- MyriaNed 'GOSSIP' protocol
- inspired on biology and human interaction

• robust,

scalable, inherently self-configuring, supports mobility, automatic adaptation to network density

Testing a Wireless Sensor Network Node

about sharing data by gossipping?

- MyriaNed 'GOSSIP' protocol
- inspired on biology and human interaction

• robust,

scalable, inherently self-configuring, supports mobility, automatic adaptation to network density

Testing a Wireless Sensor Network Node

about sharing data by gossipping?

- MyriaNed 'GOSSIP' protocol
- inspired on biology and human interaction

• robust,

scalable, inherently self-configuring, supports mobility, automatic adaptation to network density

Testing a Wireless Sensor Network Node

about sharing data by gossipping?

- MyriaNed 'GOSSIP' protocol
- inspired on biology and human interaction

• robust,

scalable, inherently self-configuring, supports mobility, automatic adaptation to network density

Testing a Wireless Sensor Network Node

about sharing data by gossipping?

- MyriaNed 'GOSSIP' protocol
- inspired on biology and human interaction

• robust,

scalable, inherently self-configuring, supports mobility, automatic adaptation to network density

Testing a Wireless Sensor Network Node

about sharing data by gossipping?

- MyriaNed 'GOSSIP' protocol
- inspired on biology and human interaction

• robust,

scalable, inherently self-configuring, supports mobility, automatic adaptation to network density

Testing a Wireless Sensor Network Node

about sharing data by gossipping?

- MyriaNed 'GOSSIP' protocol
- inspired on biology and human interaction

• robust,

scalable, inherently self-configuring, supports mobility, automatic adaptation to network density

Testing a Wireless Sensor Network Node

about sharing data by gossipping?

- MyriaNed 'GOSSIP' protocol
- inspired on biology and human interaction

• robust,

scalable, inherently self-configuring, supports mobility, automatic adaptation to network density

Testing a Wireless Sensor Network Node

Testing a Wireless Sensor Network Node

Friday, November 5, 2010

4

- reduce duty cycle (cpu/radio)
 - synchronize active periods

active	idle	1
·		

Testing a Wireless Sensor Network Node

- reduce duty cycle (cpu/radio)
 - synchronize active periods

active	idle	

Testing a Wireless Sensor Network Node

- reduce duty cycle (cpu/radio)
 - synchronize active periods

active	i i i i i i i i i i i i i i i i i i i	idle	

Testing a Wireless Sensor Network Node

- reduce duty cycle (cpu/radio)
 - synchronize active periods

active	idle	

Testing a Wireless Sensor Network Node

- reduce duty cycle (cpu/radio)
 - synchronize active periods

active	idle	

Testing a Wireless Sensor Network Node

• reduce duty cycle (cpu/radio)

synchronize active periods

time slots are shared

active	idle		

Testing a Wireless Sensor Network Node

• reduce duty cycle (cpu/radio)

synchronize active periods

• time slots are shared

collisions

- gMAC protocol takes care
 - employs randomization

Testing a Wireless Sensor Network Node

Why... is CHESS interested in MBT of WSN nodes?

- MyriaNed has potential
- has to be 'first time right'
- correctness gMAC crucial!!
- use all methods available
- MBT offers unique debugging angle
- obtaining Model extracts knowledge from designers

Testing a Wireless Sensor Network Node

Why...

are we interested in MBT of WSN nodes?

- case unlike previous cases yes, really! for multiple reasons
- time is essential (but simulated time suffices)
- non-determinism is essential
- product in active development
- guru-based process
- cool product, inspiring CHESS team!!!

Testing a Wireless Sensor Network Node

••• are we interested in MBT of WSN nodes?

- case unlike previous cases yes, really! for multiple reasons
- time is essential (but simulated time suffices)
- non-determinism is essential
- product in active development
- guru-based process
- cool product, inspiring CHESS team!!!

... this differs also from other cases discussed here

Testing a Wireless Sensor Network Node

What,

Testing a Wireless Sensor Network Node

Testing a Wireless Sensor Network Node

What,

Testing a Wireless Sensor Network Node

What,

System Software

What,

Testing a Wireless Sensor Network Node

What,

again, is our system under test?

System Software, accessed via software test harness

Testing a Wireless Sensor Network Node

What,

again, is our system under test?

System Software, accessed via software test harness

Testing a Wireless Sensor Network Node

How

do we test gMac?

Testing a Wireless Sensor Network Node
How

do we test gMac?

Testing a Wireless Sensor Network Node

- focus on gMAC software
- test for conformance
- single node
- simulated time

Testing a Wireless Sensor Network Node

- focus on gMAC software
- test for conformance
- single node
- simulated time

Testing a Wireless Sensor Network Node

How

do we test gMac?

- focus on gMAC software
- test for conformance
- single node
- simulated time

Testing a Wireless Sensor Network Node

test tools did we choose to use?

Testing a Wireless Sensor Network Node

Friday, November 5, 2010

test tools did we choose to use?

Testing a Wireless Sensor Network Node

test tools did we choose to use?

Testing a Wireless Sensor Network Node

test tools did we choose to use?

	TorXakis	JTorX	Uppaal-Tron
	Radboud Univ	Univ Twente	Univ Aalborg
time	symbolic data	network of timed automata (ta2torx) (uppaal)	

Testing a Wireless Sensor Network Node

test tools did we choose to use?

	TorXakis Radboud Univ	JTorX Univ Twente	Uppaal-Tron Univ Aalborg
time	symbolic data	network of timed automata (ta2torx) (uppaal)	
scenarios	model	– model – interactive	model

Testing a Wireless Sensor Network Node

test tools did we choose to use?

	TorXakis Radboud Univ	JTorX Univ Twente	Uppaal-Tron Univ Aalborg
time	symbolic data	network of timed automata (ta2torx) (uppaal)	
scenarios	model	– model – interactive	model

all three can model non-determinism, underspecification

Testing a Wireless Sensor Network Node

Testing a Wireless Sensor Network Node

Testing a Wireless Sensor Network Node

Testing a Wireless Sensor Network Node

Testing a Wireless Sensor Network Node

Testing a Wireless Sensor Network Node

Testing a Wireless Sensor Network Node

results did we obtain?

- more insight in SUT
- more insight in MBT
- model of SUT
- anomalies detected
- test harness to 'zoom in' on details (time-wise)
- first use of simulated time with uppaal-tron

Demo...

(I) WSN frame structure

Demo...

(2) WSN state machine

lessons did we learn? (1)

MBT set-up:

- first make MBT setup work, only then start refining
 - any MBT 'ingredient' may be wrong
 - adapter may contain errors too: treat as part of SUT
- use general interfaces
- software test harness beneficial, but has its limitations

lessons did we learn? (2)

Modeling:

- start with liberal model, add detail as insight grows
- non-determinism
 & things unknown
 → use underspecification
- documentation likely to be insufficient for modeling

Testing a Wireless Sensor Network Node ¹⁶
What...

lessons did we learn? (3)

Process:

- chief designer != modeler
- be prepared to deal with moving target
- underspecified things unknown: manual analysis
- analysis tools

What...

do we have in store for the future?

work-in-progress ability to test on real hardware

Testing a Wireless Sensor Network Node ¹⁸

What...

- 'our' MBT typically is conformance testing
- can show whether SUT behaves according to specification, for those input scenarios tested
- typically this implies testing 'good-weather' scenarios, and
- maybe even some 'bad-weather' ones, but (in the way we use MBT) only those that we can think of
- must be complemented by other techniques (e.g. whitebox fuzzing?)

Conclusions

- we are applying MBT to the system software of a WSN node, using a software test harness with simulated time
- this resulted in
 - ➡ insight (MBT, WSN),
 - anomalies found,

- and a reusable technique to apply uppaal-tron with simulated time (MSc thesis Feng Zhu)
- we are working on carrying this forward to a hardware test harness, also with simulated time

thank you for your attention!

